IISER PUNE

SPRING 2015 MATHEMATICS COMPREHENSIVE EXAM

ALGEBRA

Duration: 3 hours

Maximum marks: 120
Q. 1 Let p be a prime and \mathbb{F}_{q} be the finite field of size $q=p^{m}$ for some integer $m>0$.
(a) Suppose χ is the set of all pairs (L, P) where L is a linear subspace of \mathbb{F}_{q}^{3} of dimension 1 and P is a linear subspace of dimension 2 , satisfying $L \oplus P \cong \mathbb{F}_{q}{ }^{3}$. Define an action of $G=\mathbb{G} \mathbb{L}\left(3, \mathbb{F}_{q}\right)$ on χ by $T \cdot(L, P)=(T(L), T(P))$. Prove that,
(i) The action of G on χ is transitive.
(ii) Find the stabilizers of elements of χ.
[10 marks]
(b) Show that p divides $|G|$. Describe all p-Sylow subgroups of G.
[10 marks]
Q. 2 Let F be an algebraically closed field. Let V be a finite dimensional vector space over F. Let $T: V \rightarrow V$ be a linear transformation. Consider the $F[t]$-module structure on V given by T. Prove that if T has distinct eigenvalues, then V is a cyclic $F[t]$-module. Taking $V=F^{2}$, construct a counterexample to the converse.
[20 marks]

Hint: You may use the following fact.

$$
\operatorname{det}\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
x_{1} & x_{2} & \ldots & x_{n} \\
x_{1}^{2} & x_{2}^{2} & \ldots & x_{n}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
x_{1}^{n-1} & x_{2}^{n-1} & \ldots & x_{n}^{n-1}
\end{array}\right)=\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)
$$

Q. 3 Suppose R is a UFD. If $(i, j)=1$ for two positive natural numbers i and j, prove that $X^{i}-Y^{j}$ is irreducible in the polynomial ring $R[X, Y]$.
[20 marks]
Hint : Show that $R[X, Y] /\left(X^{i}-Y^{j}\right) \cong R\left[T^{j}, T^{i}\right]$
Q. 4 Let p be a prime and \mathbb{F}_{q} be the finite field of size $q=p^{m}$ for some integer $m>0$. Let τ be the map defined by $\tau(x)=x^{p} \quad \forall x \in \mathbb{F}_{q}$.
(a) Show that τ is an automorphism of \mathbb{F}_{q} which is \mathbb{F}_{p}-linear.
(b) Show that \mathbb{F}_{q} is a Galois extension over \mathbb{F}_{p} and its Galois group $G=\operatorname{Gal}\left(\mathbb{F}_{q}: \mathbb{F}_{p}\right)$ is the cyclic group generated by τ.
(c) Find the characteristic polynomial of τ (as a \mathbb{F}_{p}-linear map on \mathbb{F}_{q}).
Q. 5 Suppose m and n are coprime integers and let p be any other integer. Consider the short exact sequence of \mathbb{Z} modules

$$
0 \longrightarrow \frac{\mathbb{Z}}{p \mathbb{Z}} \xrightarrow{\alpha} \frac{\mathbb{Z}}{(m p) \mathbb{Z}} \xrightarrow{\beta} \frac{\mathbb{Z}}{m \mathbb{Z}} \longrightarrow 0
$$

where α is such that $\alpha(1)=m$ and β is the usual quotient by the ideal (p). Will this sequence remain exact after applying the functor $\operatorname{Hom}_{\mathbb{Z}}(\ldots, \mathbb{Z} / n \mathbb{Z})$?
[20 marks]
Q. 6 Let A be a commutative local ring and $\left\{M_{i}\right\}_{i=0}^{n}$ be finitely generated free A-modules. For each $0 \leq j \leq n$, let b_{j} denote the free rank of M_{j} as A-module. Suppose that there is an exact sequence as follows:

$$
0 \rightarrow M_{n} \rightarrow M_{n-1} \rightarrow \cdots \rightarrow M_{0} \rightarrow 0
$$

Show that

$$
b_{0}+b_{2}+\cdots=b_{1}+b_{3}+\cdots
$$

